

IDEA

O-o us D down

Contraction

Problem Statement

- Prediction of stock prices
 - Explosion of new retail traders
 - Trading signal generation
- Financial time series
 - Autocorrelation
 - Current price correlated with last timestep
 - Stationarity
 - Variance, or other statistics, change over the course of the time series

Background

- Many techniques have been used in solving stock price predictions
 - Logistic Regression
 - ANN-ARIMA Technique
 - MCMC Simulation
 - LSTM Models

Methodology

- Hybrid approach: ARIMA-MCMC
 - <u>Auto-Regressive Integrated Moving Average: ARIMA</u>
 - Removes autocorrelation and creates a stationary time series
 - MCMC
 - Creates many simulations of probability distributions using Bayesian methods
- Technique
 - ARIMA is fit to the previous 100 minutes to predict the next 30
 - Residuals are fed to MCMC to predict future residuals
 - Price prediction is the ARIMA prediction plus MCMC predicted residual

Results - Residual MCMC

Results - Price ARIMA-MCMC

Benchmark

- Deep Long Short-term Memory (LSTM)
 - Current state of the art
 - Pros:
 - Robust to stationarity and autocorrelation
 - No assumptions about models or their distributions are necessary
 - Cons:
 - Black-box model is not transparent
 - Computationally and time expensive

Benchmark Results - LSTM

Conclusion & Future Work

- Conclusion
 - MCMC has richer output than LSTM
 - ARIMA-MCMC outperformed LSTM in RMSE
 - ARIMA-MCMC took longer than LSTM when forecasting
- Future Work
 - Streamline the training process to speed up ARIMA-MCMC
 - Train and evaluate on more securities
 - Mine output for buy/sell signals + risk values

